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Abstract—Reconstructing missing data in high-dimensional
time-series remains a challenging task, especially when the
underlying signals exhibit complex temporal dynamics and non-
linear relationships. While most traditional approaches can not
model such intricacies, generative models—particularly condi-
tional score-based diffusion methods—have emerged as powerful
alternatives, offering significant improvements in imputation
accuracy. Despite their success, these models typically rely on
isotropic white noise during training, which treats all frequency
components uniformly and fails to preserve critical frequency-
dependent correlations. Relying solely on white noise can lead
to the loss of fine-scale temporal patterns, compromising the
accuracy and reliability of the reconstructed data. Our recent
work introduces a time-varying blue noise-based conditional
score-based diffusion model for imputation (tBN-CSDI) by in-
corporating a time-varying blue noise schedule into the diffusion
process to address the limitations of existing methods in handling
missing values in time series data. Experimental results on
real-world datasets demonstrate that tBN-CSDI outperforms
conventional methods based on white noise schedules. We also
discuss the integration of pseudotime analysis with diffusion
models as a promising direction for future research, particularly
for applications in dynamic biological systems where temporal
ordering is critical yet uncertain.

Index Terms—Missing Value Imputation, Blue Noise, Diffusion
Model, Time Series Data

I. INTRODUCTION

Missing values in time series data are a pervasive issue
across many domains, and a large amount of missing data
can significantly impair the performance of predictive mod-
eling. For example, the missing rate in the single-cell RNA
sequencing (scRNA-seq) data could be 50% to 90% due to
the technical limitations. Accurate imputation of time-series
missing values is critical for downstream analyses such as gene
expression profiling, trajectory inference, and regulatory net-
work reconstruction. Traditional imputation methods usually
assume a known data distribution—a strong assumption that is
often violated in real-world, high-dimensional settings where
the true distribution is complex and poorly characterized.

Several generative models have been developed to impute
missing values in high-dimensional time series data, achiev-
ing state-of-the-art performance. For instance, GP-VAE [1]
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is based on variational autoencoders (VAEs) [2] to model
temporal dynamics. On the generative adversarial network
(GAN)-based side, methods such as GAIN [3], sc-fGAIN [4],
ImputeGAN [5], and tf-biGAIN [6] utilize adversarial training
to generate realistic imputations. More recently, the Condi-
tional Score-based Diffusion Model for Imputation (CSDI) [7]
and DiffPuter [8], built upon denoising diffusion probabilistic
models (DDPMs) [9], have demonstrated superior performance
in imputing high-dimensional time-series data. However, these
models relies on isotropic white noise during training, which
treats all frequency components uniformly and fails to preserve
critical frequency-dependent correlations. To overcome this
limitation, our recent work [10] introduces a time-varying blue
noise-based conditional score-based diffusion model (tBN-
CSDI) for imputing missing values in time-series scCRNA-seq
data by incorporating a time-varying blue noise schedule into
the diffusion process. We now present an short overview of
the tBN-CSDI framework proposed in our recent work [10],
followed by a discussion of potential extensions to further
improve its performance and applicability in structured data
imputation.

II. METHOD

The Denoising Diffusion Probabilistic Models (DDPMs),
have been introduced in [9]. For completeness, we briefly
review the core concepts of DDPMs framework in this work.
DDPM consists of two key components: the forward diffusion
process and the reverse denoising process. In the forward
process, data is gradually transformed into noise by adding
small amounts of Gaussian noise over a sequence of time
steps until the original signal is nearly obliterated. The reverse
process involves training a neural network to progressively
denoise the data step by step recovering the underlying data
structure from pure noise, so the learned reverse process
enables the model to generate realistic samples.

In the forward diffusion process, noise is progressively
added to the data according to the equation

Ty =g ri—1 +V1— oy,

where € ~ N(0,7) is standard Gaussian noise and 1 — oy
represents the variance at step t. The sequence of coefficients
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a; € (0,1) controls the rate of noise injection, gradually
transforming the input data into a sample from a near-isotropic
Gaussian distribution over many steps.

In the reverse denoising process, the model iteratively
recovers the underlying data structure by removing noise
at each step. Starting from pure noise zr ~ N(0,1), the
model predicts the additive noise in x; using a neural network
eg(x¢,t), and progressively samples cleaner versions of the
data through a Markov chain, ultimately reconstructing xg.
Mathematically, the reverse step is expressed as

Tt—1 =

\/27 (xt — Jlﬁiﬁsg(xt,t)) + 02,

B is the noise schedule parameter at step ¢, &y = Hi:l Qg
and o, controls the magnitude of injected noise in the reverse
step.

The training objective of DDPM is to learn a neural network
€p that predicts the noise added during the forward diffusion
process. This is achieved by minimizing the expected squared
error between the true noise € and the model’s prediction
gg(x¢,t), which is given by

£(0) = Eaye [[le = colen, )]

where x is a sample from the data distribution, ¢ is a randomly
sampled timestep, and x; is the noisy sample at step ¢ obtained
via the forward process.

The Conditional Score-based Diffusion Model for Imputa-
tion (CSDI) aims to learn the conditional distribution over
missing values given the observed entries and a binary mask
indicating which elements are observed. Compared to standard
DDPMs, CSDI modifies the forward diffusion process such
that only the missing entries are progressively noised, while
observed entries remain untouched throughout the process.

Specifically, partition o into z5"® components,

mis

and xg
e Observed entries:

obs obs

xy" =z (no noise added)

e Missing entries:
l’;niS:\/C_th'glis+\/1—C_kt€, 5'\’./\/(0,])

This masking-aware diffusion strategy ensures that the model
retains full information from observed data at every step. As
a result, the reverse process becomes a conditional denoising
task, where the model reconstructs the missing values condi-
tioned on both the noisy version of the missing part and the
clean observed data. The reverse transition is modeled as:

Do (:L,;nisl | 1,211157 x8b5)7
where the neural network ey is trained to predict the noise
in the missing components, conditioned on the observed data
and the timestep t.

Both DDPM and CSDI employ white Gaussian noise in
the diffusion process. However, white noise assigns equal
power across all frequency components, treating high- and
low-frequency dynamics uniformly. This isotropic perturbation

can disrupt fine-scale temporal structures and fail to preserve
critical frequency-dependent correlations inherent in biological
time series. As a result, reliance on white noise may lead
to oversmoothing or distortion of transient but biologically
meaningful patterns, ultimately compromising the fidelity of
data reconstruction.

To address this limitation, our recent work [10] introduces
a time-varying blue noise-based conditional score-based dif-
fusion model for imputation (tBN-CSDI). By incorporating a
time-varying blue noise schedule, where noise power increases
with frequency. Our work [10] generates blue noise epjye
by combining Ulichney’s void-and-cluster framework [11]
with simulated annealing and a Cholesky-based decomposition
method [12]. The procedure begins by designing a target
covariance matrix X via a simulated annealing process applied
to the dataset, then, a Cholesky decomposition is performed
to obtain the lower-triangular factor L such that ¥ = LLT.
Finally, white noise ewpie ~ MN(0,1) is transformed into
structured blue noise via linear mapping:

Eblue = L Ewnite-

To balance the injection of white noise and blue noise during
the diffusion process, we introduce a noise blending schedule
controlled by a time-varying coefficient ~,, defined as

t ’YT
Yt = O |Vstart + (’Yend - ’Ystart) (T) :l )

where ¢ denotes the current time step, 7" is the total number
of diffusion steps, Ystart> Yend> ¥+ > 0 are blending parameters
which are estimated empirically. o[-] is a saturation func-
tion—typically a sigmoid that ensures ~y; € [0, 1].
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Fig. 1: Noise blending schedule coefficient changes with
diffusion steps

Using the noise blending schedule coefficient v;, we obtain

a time-varying noise €; that smoothly interpolates between
blue and white noise:

€ = 7Vt * Ewhite + (1_'}%) * €blue

257
Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on December 31,2025 at 02:07:29 UTC from IEEE Xplore. Restrictions apply.



As illustrated in Fig. 1, this scheduling mechanism dy-
namically modulates the noise type throughout the diffusion
process. During early steps (t < 1), v+ =~ 0, SO €; = €plye,
resulting in fine-scale, high-frequency perturbations that pre-
serve local structure and texture. In contrast, during later stages
t — T), v+ — 1, and thus € = eynie, enabling broader,
global exploration of the sample space. This staged noise
injection strategy allows the model to first capture and refine
intricate details before transitioning into large-scale denoising
or pattern formation, effectively balancing local fidelity with
global coherence.

In the tBN-CSDI framework, the key difference from the
original CSDI lies in the replacement of standard Gaussian
white noise with the blended noise € during the forward
diffusion (training) process. Specifically, for the masked or
missing components of the data, the noising procedure is
modified as follows:

e = g xS 4 /Ty - €

In the imputation (reverse) process, we also incorporate
the blended noise € to guide the denoising steps. Specifically,
during the backward sampling phase, the missing components
are updated as: x5 < 27"%* 4 oy - €. That is, the reverse step
may take the form

1 mis Bt

= e - o
(673 1—6[75

For further details on the algorithm and the complete
imputation workflow, the interested reader is referred to our
recent work [10]; we include only a high-level overview here
for brevity.

o (xS t|zgP*)) 4 oy - .

III. RESULTS

We implement tBN-CSDI algorithm to impute missing
values in time series data and compare its performance
against CSDI and other state-of-the-art imputation methods.
Our recent work [10] has analyze three datasets, including the
PhysioNet Challenge dataset [13], and two single cell RNA
sequencing data. Here, we provide some results that were
not published before. The PhysioNet data contains clinical
records from approximately 4,000 ICU patients, each covering
the first 48 hours post-admission and some physiological vari-
ables (age, weight, heart rate, glucose levels, etc.) measured
irregularly over time. The scRNA-seq dataset [14] contains
120 distinct monocytic THP-1 human myeloid leukemia cells
at each of eight time points, totaling 960 cells. To simulate
different sparsity levels, we randomly masked observed values
at varying missing rates.

We perform probabilistic imputation by generating 100
independent samples for each missing value in the PhysioNet
dataset. Due to the nondeterministic nature of the diffusion
process, this yields a predictive distribution at each time point.
As illustrated in Fig. 2-Fig. 3, the dark blue line represents
the median of the predicted distribution and serves as the final
imputed value. The light blue shaded area indicates the 5th
to 95th percentile range of the samples, reflecting the model’s

uncertainty: a wider band corresponds to higher uncertainty,
while a narrow region suggests greater confidence. The orange
crosses (x) denote observed values, while the red dots mark
the true values at missing entries (i.e., ground truth targets).
Ideally, the median imputation (dark blue line) should closely
align with the red dots, and the true values should fall within
the light blue uncertainty band, indicating both accuracy and
well-calibrated uncertainty estimation.
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Fig. 2: Probabilistic imputation distribution for PhysioNet
dataset with missing rate 0.1 using tBN-CSDI. The orange
crosses (x) denote observed values, while the red dots mark
the true values at missing entries.
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Fig. 3: Probabilistic imputation distribution for PhysioNet
dataset with missing rate 0.9 using tBN-CSDI. The orange
crosses (x) denote observed values, while the red dots mark
the true values at missing entries.

The results in Fig. 2-Fig. 3 demonstrate that our tBN-CSDI
method achieves accurate imputation with well-calibrated un-
certainty estimates across varying missing rates. At a missing
rate of 0.1, the model imputes missing values with high
confidence, as evidenced by narrow uncertainty bands, and all
true values (red dots) lie within the light blue confidence re-
gion—indicating reliable uncertainty quantification and strong
imputation accuracy. Even under an extreme missing rate of
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0.9, where only 10% of the data is observed, most true values
remain within the predicted confidence bands. This suggests
that tBN-CSDI maintains robust performance and uncertainty
awareness even in highly sparse settings, enabling trustworthy
imputations despite severe data incompleteness.

We also apply tBN-CSDI to impute missing values in single-
cell RNA sequencing (scRNA-seq) data under varying missing
rates, ranging from 0.1 to 0.9. The full experimental results
are reported in [10]; here, we provide a brief summary.

Imputation performance is evaluated using the mean root
mean squared error (RMSE), where lower values indicate
better accuracy. All the experiments were run five times and
calculated the mean values of RMSE. Traditional methods
such as KNN and SoftImpute achieve RMSEs exceeding 1.0,
while the original CSDI model based on white noise yields an
RMSE of approximately 0.9. In contrast, our tBN-CSDI re-
duces the average RMSE to below 0.6, representing a relative
improvement of over 30% compared to all existing approaches.
Notably, tBN-CSDI maintains consistent performance across
all missing rates, demonstrating insensitivity to increasing data
sparsity. This robustness highlights the effectiveness of blue
noise blending in preserving biological signal structure even
under extreme missingness, making it particularly well-suited
for challenging real-world scRNA-seq applications.

IV. FUTURE RESEARCH

In time-series single-cell RNA sequencing (scRNA-seq)
data, although cells are sampled at the same experimental time
points, they often reside in different biological states, such
as varying phases of the cell cycle or developmental trajec-
tories. As a result, the observed measurement time may not
reflect the true biological progression of each cell. Pseudotime
analysis (e.g., Monocle [15], Slingshot [16]) has emerged as
a powerful tool for inferring this latent biological order by
ordering cells along a dynamic process (e.g., differentiation
or cell cycle) based on their expression profiles. In contrast,
our current tBN-CSDI framework performs imputation using
canonical observation time, effectively ignoring the underlying
pseudotemporal structure.

A promising direction for future work is to extend tBN-
CSDI to operate in pseudotime rather than experimental time
only. By aligning the diffusion process with inferred pseudo-
time trajectories, the model could leverage more biologically
meaningful temporal dependencies, potentially improving im-
putation accuracy and preserving dynamic gene expression
patterns. This would involve integrating pseudotime estimation
methods (e.g., [15]) into the diffusion framework or jointly
learning the latent trajectory and imputation network, enabling
more accurate reconstruction of gene expression dynamics in
complex developmental processes.

Another promising direction for future research is to inves-
tigate how the scheduling order of noise types—specifically
blue and white noise affects imputation performance. In the
current tBN-CSDI framework, we adopt a fixed schedule
where structured blue noise dominates in early diffusion
steps (promoting fine-scale detail preservation), while white

noise is gradually introduced in later stages (enabling broad
exploration). However, reversing this order, i.e., injecting white
noise early and reserving blue noise for later refinement
may lead to different convergence behavior or generalization
properties. It remains an open question how such a reversal
would influence the imputation performance.

Moreover, extending the noise spectrum beyond blue and
white opens further opportunities. For instance, pink noise,
which exhibits stronger low-frequency components, may better
capture long-range temporal correlations. Incorporating pink
noise into the blending schedule or learning the optimal
spectral characteristics could enhance the model’s ability to
recover biologically plausible trajectories.

Exploring these alternative noise schedules and spectra
will deepen our understanding of how stochastic perturbation
design influences representation learning in diffusion-based
imputation models.
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